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AXlSYMMETRICAL CONTACT PROBLEMS FOR PRESTRESSED 

DEFORMABLE BODIES 

V. M. Aleksandrov and I. V. Vorotyntseva UDC 539.3 

Axisymmetrical contact problems are considered for a half-space and a layer of finite 
thickness h lying without friction on a deformable base previously stressed by uniform forces 
with intensity p applied at infinity. It is assumed that the material of deformable bodies 
is described by equations of physical nonlinear elasticity theory. The initial stress- 
strained state of the bodies (prestressing regime) is determined as an accurate solution 
of these equations. Action of a load on the surface of a layer (half-space) is considered 
as a small disturbance of the basic nonlinear stress field caused by prior loading. This 
makes it possible to perform linearization of all equations with respect to additional 
stresses, strains, and displacements. Contact problems for impression of a rigid stamp 
into a physically nonlinear material are posed for the linear equations obtained which are 
then reduced to first-order integral equations with a symmetrical irregular kernel with 
respect to distribution functions for contact pressures. Solutions of these equations are 
built up by means of asymptotic methods. Cases of loss of stability and deformability of 
a medium as a result of prestressing are studied. The effect of prestressing regime on 
the magnitude of contact pressures is studied. 

i. Resolution equations for physically nonlinear (geometricallylinear) elasticity 
theory for the case of axial symmetry and with the condition of absence of mass forces may 
be written as follows [I]: 

0% a'~z % --  % O, o-c,~ a~,. trz ( 1 . 1 )  
o-7 + -aT + ~ - f ; -  + -~z + 7- = O; 

e~ ----~o: q- (~ --~)(;, e~ = $o~ /- (q0 --$)(~, (1 .2 )  
~ =gg~+(~--~)o, e~ = ~ ,  e=~o, ?=25~, 

=(o~+o~+~)/3, e=(e~+e,+eD/3, 
i = ~ [(~, - ~)~ + r - ~z) ~ + (~r - o~)~ + 6 ~ ]  1/~, 

~_~[ 3 2 2 , -~'/2 
~, = @ , . _  ~<,): + ( ~ , _  ~:).~ + @<, _ ~j2 + m ('~"~ + v,: + "l,<~:)J , 

e~ = Oular ,  e~ = u / r ,  e~ = OwlOz, 

e ~  = ( t / 2 ) ( a u l a z - t - O w / a r ) ,  u = u ( r ,  z) ,  w = w(r ,  z) ,  

a28r a2Ez = 2 o2Srz osr e r - sip 
Oz--": y -t- Or"" T ar Oz' Or r 
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Here (2~) -I is adjusted shear modulus (the understanding of shear modulus G is generalized); 
~-~ is adjusted bulk strain modulus (the understanding of all-round compression modulus K 
is generalized); functions @ = ~([o[, ~) and ~ = ~([o[, ~) are continuous, monotonic, posi- 
tive, and they are even functions of their arguments. 

For every elastic material there exists a function of six stress components #(or, 
o , o z, ..., ~ exhibiting the properties 

e = (t/3)Oqb/Oa, ? ----- 0@/O-~ 

and the so-called specific additional work of deformation [2]. 
and (1.3) we have 

( 1 . 3 )  

Taking account of (1.'2) 

= ( t / 3 o ~ 9 ~ / 0 a ,  ~ = (l/2x)o~b/o~. 

Then the condition for existence of a potential may be written as 

(O/O~)(3a~) = (alao)C2z~). ( 1 . 4 )  

E q u a t i o n s  ( 1 . 1 )  and ( 1 . 2 )  a r e  s u i t a b l e  f o r  d e s c r i b i n g  t h e  s t r e s s - s t r a i n e d  s t a t e  o f  
p e a t y ,  c l a y ,  s a n d y ,  and f r o z e n  s o i l s .  

It is well known that for soils under hydrostatic compression bulk modulus K = E(I- 
2v) -I normally increases and tends towards infinity, but with an increase in shear the strain 
modulus G decreases tending towards zero and -~ < ~o' ~ 0, and ~ > ~' ~ 0 (Figs. 1 and 2). 
For soils there is also the property of dilation, i.e., a change in volume with shear. Soils 
of quite dense texture in shear start to increase in volume (the phenomenon of dilation) 
and loose soils decrease in volume (phenomenon of contraction). From the condition for 
existence of a potential (1.4) it follows that (Fig. 3).: ~o' ~ 0 with dilation (curve i) 
and ~o' < 0 with contraction (2) [2]. 

We consider the question of the independence of functions ~ and ~ and the possibility 
of reversibility of the relationships e = ~o and y = 2~, i.e., the possibility of present- 
ing them in a form solved with respect to o and ~: o = n(3r y)e, 2x = ~(3e, y)y. For 
this it is necessary that it is Jacobian 

D(%~) ~ ~ . . . .  
D (~, ,----Y = 0~ a~ = ~ ~  - -  ~*~o v~ O. 

I t  i s  shown a b o v e  t h a t  ~ o '  and ~ '  h a v e ' d i f f e r e n t  s i g n s ,  b u t  ~ '  and ~ o '  h a v e  t h e  same s i g n s ,  
and c o n s e q u e n t l y  t h e  J a c o b i a n  i s  n e g a t i v e  and n o t  e q u a l  t o  z e r o .  

We assume t h a t  i n  t h e  i n i t i a l  c o n d i t i o n  t h e  m a t e r i a l  i s  u n d e r  c o n d i t i o n s  o f  a u n i f o r m  
stress field. The initial stressed state for the material is given as 

ao o ao = ~o _ 2 p_ 
= 0~= ~p, rz-- O, oo_~ __~p, ~o__ ]/3" 
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Then initial strains in accordance with (i.I)and (1.2) have the form 

o ~o + 2q~o 2 (q~o _ ~po) o 
~ = ~ = 3 p ,  ~o = 3 P' ~ = 0. 

Furthermore we assume that 
% = ~ o + % ,  . . . .  , ~r = ~ r  ~  . . . .  U = U  ~  . . . .  , 

O = O  ~ 1 7 6 1 7 6  q ~ = q ~ 0 + q ~ * ,  
t ~ " t 

and ~ * =  ~1~Io* + ~ % * , ~ *  = ~1~1~* + %%*,  where  v a l u e s  w i t h  a s t e r i s k s  a r e  s m a l l  d i s t u r b a n c e s  o f  
the main stress, strain, and displacements fields. We linearize (i.i) and (1.2) with respect 
to their disturbances: 

O(r*/Or + O~*z/Oz + (~* --o*)Ir = O, ( 1 . 5 )  

Ox~* /Or + Oa*/Oz + ~* / r  = O, 

3~,.* = ~~  + E ~ % *  + E ~ * ] ,  

3%* = ~ ~  -4- E~(%* -4- E~o~*] ,  

= ,  +%)+ 
2 ~  = 2 + n + s ,  2i~ = n - -  I + s ,  2 ~  = n - - t  + q ,  

E3~ = n - -  1 - ~ % ,  Y,a: : - :n-{ -  2 n  a t ,  s = s l +  2%, 

r ~ = s  3 + 2 %  q ~ = 2 ( s ~ - - s ~ ) ,  t = 2 ( s  4 - s 3 ) ,  

o* = (1/2)(~,* + %* + o j ) ,  

x = (1/2]/-3)(20~* - -  %* - -  %*), 
2 *  2 * 2 * * * * 

0 ~'r 0 8 z 0 8 r z  08cp 8 r -- g~ 

. . . .  2 o,.-7~ z az 2 -]- Or ~ ' Or r ' 

�9 Ou* * u* * Ow* * t (Ou* aw*] .  
er = "~-., % = 7 '  ez = -'~z' erz = ~- \-bT"z "4- Or 1' 

t i l z 
0 0 �9 wJ _ ~ r , o  ( 1 , 6 )  

n = c p ~  ~ s l =  P - ~ - -  P 2 - ~  ,o, s~---- P - ~ - -  P '~--~ ,o ,  
! t t 

_ ,iool %~ %o I %0 

Here dimensionless parameters n, s l, s z, s 3, s 4, are introduced which characterize the mechan- 
ical properties of the material of the medium in question and taking account of the prestress- 

ing regime. 

From (1.5) we obtain equations for determining additional stresses: 

�9 Iv a,~* u* v aw* l �9 ~ [ o~* u* - ow*l  (1.7) 

iron, ;) o ,1. ion. oo.1 Oz = ( ~ ~  Z 4\Or 4:- + Y ' 5 ~  , "Crz----(2~~ -1L Oz "4- Or J' 

h = ( n - + 2 + t ) ( i - i - 2 n - i 2 s ) - - 2 ( n - - t + q ) ( n - - t q - q l ) ,  

E 1  = E l r E a z  - -  ~ ] a r Z l z ,  Y'2 f-- 2 3 r 2 1 z  - -  El~O23Z,  

E3 = --321~,  E~ = - -32 ,~ ,  E5 = 3 (Y~ + Zi~). 

Additional stresses in form (1.7) are placed in the equilibrium equation from (1.5), as 
a result of which we arrive at a set of equations with respect to additional displacements 

of the medium: 

L1 "~r 2 + t a r  ~ + L2~z2 u* + L 3 w * = O ,  ( 1 . 8 )  

where  L i = L i ( n ,  s l ,  s 2 ,  s a ,  s 4 )  ( i  = 1, 2,  3,  4) a r e  f u n c t i o n s  o f  p r e s t r e s s i n g  p a r a m e t e r s  
(1.6) and LI = 2ZI, L 2 = A, La = A + 273, L~ = A + 2r~, L s = 27. 5. 
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Conditions for ellipticity of the set of Eqs. (1.8) have the following form: 

a) the case of complex conjugate roots of the determinant of system (1.8) 

B 2 -- 4 A C <  O, ]h = c-5  id, Ix 2 = ~ -~ c - -  id, (1.9) 

b) cases of real roots of the determinant of system (1.8) 

B 2 ~ 4 A C ,  A >  O, B < 0 ,  C >  0; 

B 2>~4AC, A < 0 ,  B >  0, C < 0 ;  

:[~1 ~- ['--B4-(B-~--4AC)1/211/2; _ _  , IX2 ~___ L - -  B - -  ( ~ [  B~ 4AC)1/2.11/2 ' 

~3 =---~h,  P~ = - - P 2  
(A = L2L 5, B = LaL 4 -  L1L 5 -  Lz ~, C = L1Lz). 

As an example we w r i t e  c o n d i t i o n s  f o r  e l l i p t i c i t y  f o r  a p a r t i c u l a r  case  of  f u n c t i o n s  
= s4------0, n r  s l  = s ~ 0 ,  and ~, and in fact when r = ~(x), but ~ = const. In this way s 2 

s 3 =-2s, then system (1.8) is elliptical if 

a) n < --2, 0 < s < --(u + 2); 

- - 2 < n < - - 0 , 5 ,  --(n -5 2) < s < 0; 

n >  --0,5, s <  --(u -5 2), s >  0; 

(1.10) 

b) n <  --2~ - - 0 , 5 <  s <  0~ --(n + 2) < s <  . ( 1  + 2n)/2; 
- - 2 < ~ n < - - 1 . 5 ,  - - 0 . 5 < s < - - ( n + 2 ) ,  0 ~ s < - - ( i  + 2n)/2; 

--1.5 ~ n <~ --0.75, --0.666 <~ n < --0.5, 0 < s < --( t  A- 2n)/2; 
n > 0 ,  - - 0 . 5 < s < 0 ;  

n = --2, --0.5 < s < --(1 q- 2n)/2; 

n ~< --t .5,  n >  0, --(t  + 2n)/(2 + 3n) < s < --0.5; 
- - t .5  < n < - - t ,  --(1 + 2n)/(2 + 3u) < s .~  --(n + 2); 

- - 0 . 5 < n < 0 ,  - - ( t + 2 n ) / 2 < s < 0 .  
As follows from (i. I0), critical values of quantities n and s satisfy the equations 

s = - - ( n + 2 ) ,  n.~<--l.5,  n / > l ;  
s = 0 ,  n < - - 2 ,  n > j - - t . 5 ;  

s = --(t  + 2n)/2, s = --(t  + 2n)/(2 -5 3n), 
s = - - 0 . 5  ( - - o o < n < o o ) .  

In Fig. 4 the region of ellipticity for the form of functions ~ and ~ in question is 
hatched. From a mechanical point of view cases of loss of ellipticity for set of Eqs. 
(1.8) may be treated as cases of loss of internal stability of the medium as a result of 
prestressing [3, 4]. 

2. Now we consider the contact problem for a prestressed physically nonlinear layer. 
Let a layer which occupies region (-~ < r < ~, 0 <_ T K 2~, -h <- z ~ 0) and prepared of 

Fig. 4 
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material obeying relationships (1.2) lie without friction on a rigid base. At the boundary 
of the layer z = 0 force P is impressed by a rigid stamp circular in plan. We assume that 
frictional forces in the region of contact of the stamp and the layer are small and they 
may be ignored, and the radius of the contact region does not depend on the magnitude of 
the applied force. We shall consider action of the stamp on the layer as a small disturbance 
of the main stress field (1.2). We write boundary conditions for the problem formulated: 

�9 r% (r, - -  h) = O, w* (r, - -  h) = O, x~%(r,O)=O ( r < ~ ) ;  ( 2 . 1 )  
%*(r, O) = 0  ( r >  a); w*(r, O) = --  [5 - -  /(r) ] ( r~<a ) .  

For them it is necessary to add the requirement of extinction of stresses (additional in 
relation to the initial stress field) at infinity. Here 6 is forward displacement of the 
stamp along axis z; f(r) is the shape of the stamp base. 

In order to construct a solution of the problem posed we take an integral Hankel- 
Fourier transform with respect to variable r of equations of set (1.8) in the region of 
its ellipticity (1.9), i.e., we shall find disturbances of displacements u* and w* in the 
form 

u* (r, z) = U (~, z) a g ,  (ar) du, w* (r, z) = S W (a, z) a J  o (ar) du. ( 2 . 2 )  
0 

In this way (1.8) for the Hankel-Fourier transform U and W takes the form 

L~U"(~z,  z) - -  ~z~L1U(a, z) - -  (zL~W'((z,  z) = O, 

L a W " ( a ~  z) tz~L~W(cz, z) -[- r z) = O. 
(2.3) 

Solution of system (2.3) is given by the equations 

U (o5, z) L3~l 
L2~ _ 51 [C 2 (~) sh ~iz -5 CI (~) ch a91z ] + (2.4) 

L3[t ~ 
+ L,,~---- 51 [C4 (~) sh a~.~z + C~ (~) ch a~z],  

W(a, z) = Cl(cz)sh a~lz + C2(~)ch r162 + C3(a)sh a~t~z + C~(a)ch a~t2z 

(Ci(a) (i = I, 2, 3, 4) are unknown functions subject to determination from the boundary 
conditions for the problem). 

Furthermore, we introduce into consideration a function for distribution of contact 
pressure q(r) : 

c~*(r, O) = --q(r)  (r < a) ( 2 . 5 )  

and assuming that it is temporarily unknown we subject the first three boundary conditions 
of (2.1) together with (2.5) to integral Hankel-Fourier transform (2.2). Then by satisfying 
transformation boundary conditions by means of (2.4) and considering that additional stresses 
with r + ~ disappear in view of the properties of Hankel integrals, we find that 

C~(r162 -- Cl(a)th ~z~%h, 

[(53 -- 52 ) ~t2 ~,. L1 ] ( ~  -- ~2) i l  Q (__~) 
. . . . . . . . .  ch ~ h h s h  a~x2h ~~ (=) = ' 

C 8 ((7.) = [(L3 -- 52) (~t~ .3 l- Li)  ] (~2 _ ~/2) El ~~ Q ~(~ 
L 0 sh ch  r 

CA(a) = C3(a)th ap.zh, 

X [L3E a -5 E~ (L2~2 2 - -  L1)] sha~hhch~z l x :h  - -  th [(La --  L~)Ix 2 + L1] X 

• + 

Here Q(a) = .[ q(p) pJ0(ap) dp is Hankel-Fourier transform for functions of the distribution 
0 
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of contact pressure. 
of the stamp 

Now it is possible to write an expression for determining impression 

w* (r, z) = (L~,~ ---I,,)--~z ~7,~rt--~12_ L,)" *~ q (p) odP X 
0 

o o  

X ; A~-' (a){[(L s --  L2),~ + n,] sh a~h (z + h)sh cr 
0 

- -  [(n 3 - -  n2) p.~ + n~] sh a~t 2 (z + h) sh art,h} Jo (ap) I o (at) da. 

By satisfying the last boundary condition of (2.1) we reduce the contact problem in question 
to a first order integral equation with respect to function q(p): 

1 

] q ( p ) p k ( - ~ , - ~ ) d p = ) ~ O [ 6 - - / ( r ) ]  ( r <  1). ( 2 . 6 )  
0 

The k e r n e l  o f  i n t e g r a l  Eq. ( 2 . 6 )  has  t h e  form 
o o  

0 

where 

L (a) ---- ~*b4 -- b3~2 0 = ~Ibr -- ~2b3 
c t h  - c t h   L1% _ ( 2 . 8 )  

bs = [(L8 --  L2)pl' -5 L,][Z,L3 + z~(n~2 ~ --  L~)], 

b, ---- [(L a --  L2)tt2 ~ -4- L~][E~L3 -}- Zs(L2~ ~ --  Lx)]. 

In relationships (2.6)-(2.8) A, e, p, r, 6, f are dimensionless values, and A = ha -l charac- 
terizes the relative thickness of the layer. It should be noted that with X + ~ the integral 
equation for a prestressed physically nonlinear layer (2.6) is converted into an integral 
equation for the corresponding contact problem for a prestressed physically nonlinear half- 
space 

~q(plpdp~Jo(aPlJo(arld= = 0 [6--]<rl] (0<r<l). 
0 0 

An important characteristic of the problem for the half-space is parameter O which in this 
case may be called the contact stiffness. Provided below are the results of studying values 
of contact stiffness for a particular case of functions ~ and ~, and in fact O = O(x), 

= const: 

2(n+ 2 + s) 
O = [(t + 2 n ) +  (2 +3n) s][t + 2 n - - s + ' V [ i  + 2n+ (2+3n) si(t +2n+2s) l"  

In the region for the change in parameters n and s where there is ellipticity of equations 
ofset (1.8), 8 takes real values, but it cannot be both positive and negative. Outside 
this region 8 becomes complex. The region for negative values of contact stiffness, which 
are labelled 1-3 in Fig. 4, should be excluded from consideration because a negative value 
of 8 contradicts the physical sense of the problem. It is interesting to note that the 
given regions are bounded by contours with which on passing through there is surface loss 
or deformability of the medium (8 = ~), or it is stable (8 = 0). Contact stiffness reverts 
to infinity at the contours 

s = - - ( t  + 2 n ) ( 2 + 3 n )  -1 ( n < - - t ,  n>~0) ;  

n = O  (s~<--2) ;  n = - - 0 . 5  ( I s J < o o )  

and it takes a zero value with 

s : --(n -4- 2) (Inl < oo); 
s = - - 0 . 5  (n = - - 0 , 5 ) ;  s = 0 (n = - - 2 ) .  

These processes are accompanied a simultaneous disruption of internal stability for the 
material of the medium as a result of prestressing. Given in Fig. 5 are curves for the 
dependence of 8 on material mechanical properties and prior stressing. 
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Fig. 6 

3. We consider a comprehensive integral equation of the contact problem for a pre- 
stressed physically nonlinear layer (2.6). In external form it entirely conforms with the 
integral equation of the contact problem for a linear-elastic layer without initial stresses 
and is distinguished from it only in the form of the function for the symbol of the kernel 
L(=) and the value of dimensionless parameter 8. Analysis of expressions (2.8) showed that 
function L(~) exhibits all of the typical properties from [5]: 

I) in the plane of complex variable z = ~ + i~ function L(z)z -I is even and meromorphic, 
and with ~ = 0 it is real and regular; 

2) lim L(z)z -1 D, O = ~1b4 -- ~b~>0;  
z~0 ~ b4 -- b3 

3) on a real axis with lal ~ ~ there is the estimate L(~) = 1 + O(e-~l~l), ~ = 2(~ x + 
D2) > 0. Therefore in order to solve integral Eq. (2.6) it is possible to use asymptotic 
methods of "large and small l" [5]. Results of studying (2.6) by means of these methods 

- 1 

are presented in Fig. 6 in the form of a dependence for impression force P = ~ q(r)dr 
0 

with fixed sinking of the stamp (6 = const) and I = 3.1 on mechanical properties of the med- 
ium ~ :~)(~), ~ = r and prestressing conditions. 
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